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Abstract. Margin-based strategies and model change based strategies
represent two important types of strategies for active learning. While
margin-based strategies have been dominant for Support Vector Ma-
chines (SVMs), most methods are based on heuristics and lack a solid
theoretical support. In this paper, we propose an active learning strat-
egy for SVMs based on Maximum Model Change (MMC). The model
change is defined as the difference between the current model parame-
ters and the updated parameters obtained with the enlarged training set.
Inspired by Stochastic Gradient Descent (SGD) update rule, we measure
the change as the gradient of the loss at a candidate point. We analyze
the convergence property of the proposed method, and show that the
upper bound of label requests made by MMC is smaller than passive
learning. Moreover, we connect the proposed MMC algorithm with the
widely used simple margin method in order to provide a theoretical jus-
tification for margin-based strategies. Extensive experimental results on
various benchmark data sets from UCI machine learning repository have
demonstrated the effectiveness and efficiency of the proposed method.

Keywords: Active Learning, Maximum Model Change, SVMs.

1 Introduction

In supervised learning, a large amount of labeled data is usually required to
obtain a high quality model. A widely used method for data collection is pas-
sive learning, where the training examples are randomly selected according to
a certain underlying distribution and annotated by human editors. However, in
many practical applications, there might not be sufficient labeled data examples
due to the high cost associated with data annotation. To solve this problem, ac-
tive learning aims at selectively labeling the most informative instances with the
goal of maximizing the accuracy of the model trained. In a typical active learn-
ing framework, the learner iteratively chooses informative data examples from
a large unlabeled set (denoted as pool U) with a predefined sampling function,
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and then labels them. This data sampling process is repeated until a certain per-
formance expectation is achieved or a certain labeling budget is used up. Active
learning is well-motivated in many supervised learning tasks where unlabeled
data may be abundant but labeled data examples are expensive to obtain [8,9].

Support vector machines (SVMs), which have arisen from statistical learn-
ing theory, play a significant role in the machine learning community with solid
mathematical and statistical foundation [11,12]. Due to many desired properties
including excellent generalization performance, robustness to the noise, and ca-
pability to deal with high dimensional data, SVMs have been successfully applied
to many learning applications. As a result, active learning for SVMs has recently
drawn a great deal of attention. In previous studies, several active learning al-
gorithms have been specifically proposed for SVMs [5,10,13,14,17,18]. Most of
them are derived with the notion of margin, i.e. preferring the points located
in the margin. For example, simple margin [18], the most widely adopted strat-
egy for SVMs, selects the examples that are closest to the decision boundary as
the most informative ones. Although the margin-based active learning heuristics
are fairly straightforward and natural for SVMs, these popular approaches lack
a solid theoretical justification, i.e. how can we guarantee that margin-based
active sampling performs better than passive learning.

In this paper, we introduce a new interpretation for the margin-based active
learning by bridging it with the idea of model change. In particular, we attempt
to provide theoretical justifications for the margin-based methods. We consider
the capability of examples to change the model, and accordingly propose a novel
margin-based active learning strategy for SVMs called Maximum Model Change
(MMC), which is to choose the examples leading to the maximal change to the
current model. The change is quantified as the difference between the current
model parameters and the new parameters obtained with the expanded training
set. Inspired by the well-studied work on the Stochastic Gradient Descent (SGD)
update rule [15,16,19], where the parameters are updated repeatedly according
to the negative gradient of the objective function at each single training example,
we use the gradient of the loss at a candidate example to approximate the model
change. Under the model change principle, the instances lying in the margin are
proven to be the ones having the capability to change the model. We further an-
alyze the convergence property of the proposed MMC method, and show that 1)
MMC is guaranteed to converge, and 2) the upper bound of label requests made
by MMC is smaller than that of passive learning. We further connect MMC with
simple margin to provide a uniform view to these two methods. The property
holds for other well-known SVMs active learning methods as well. We validate
our algorithm with various benchmark data sets from UCI machine learning
repository. Extensive experimental results have demonstrated the effectiveness
and efficiency of the proposed active learning approach.

The main contributions of this paper are summarized as follows.

– Focusing on SVMs as the base learner, we introduce a novel interpretation
for margin-based active learning with model change, and propose a new
sampling algorithm called Maximum Model Change (MMC).
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– We theoretically analyze the convergence property of the proposed approach,
and compare the sampling bound against passive learning.

– We connect MMC with the widely adopted simple margin heuristic in order
to provide a uniform view to these two active learning methods.

The rest of this paper is structured as follows: Section 2 briefly reviews the
related work. Our active learning approach for SVMs, Maximum Model Change
(MMC), is presented in Section 3. Section 4 provides the theoretical justification
of the convergence property for the proposed approach, and compare the sam-
pling bound with that of passive learning. Section 5 explores the relationship
between MMC and simple margin. Section 6 presents the experimental results.
Finally, we conclude the paper in Section 7.

2 Related Work

The goal of active learning is to train a high quality model using as few labeled
training set as possible, therefore minimizing the labeling cost. In this section, we
first briefly review several general active learning strategies, and then summarize
existing margin-based active learning methods for SVMs.

2.1 Active Learning

Various active learning strategies have been proposed in the literature. Here we
briefly review the typical active learning strategies:

1. Uncertainty Sampling (US): The US approach aims to choose the exam-
ples whose labels the current classifier is most uncertain about. This strat-
egy is usually straightforward to implement for probabilistic models. Take
binary classification as an instance, US aims to query the data point whose
posterior probability is most close to 0.5 [22]. For multi-class classification
problems, examples with the smallest margin between the first and second
most probable class labels are selected [1].

2. Query By Committee (QBC): The QBC strategy generates a committee
of model members and select unlabeled instances about which the models
disagree the most [4]. A popular function to quantify the disagreement is vote
entropy. To efficiently generate the committee, popular ensemble learning
methods, such as Bagging and Boosting, have been employed [2].

3. Expected Error Reduction (EER): The EER strategy aims to minimize
the generalization error of the model. Roy et al. [20] proposed an optimal
active sampling method to choose the example that leads to the lowest gen-
eralization error on the future test set once labeled and added to the training
set. The weakness is that the computational cost of this method is extremely
high. Instead of choosing the example yielding the smallest generalization er-
ror, Nguyen et al. [7] suggested to query the instance that has the largest
contribution to the current error. Cohn et al. [21] proposed a statistically
optimal active learning approach, which aims to choose the examples mini-
mizing the output variance to reduce the generalization error.
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4. Expected Model Change (EMC): This strategy is to select data points
that are expected to incur a large model change once added to the training
set. Settles et al. [23] proposed an algorithm for logistic regression, and the
change is quantified as the gradient length of the objective function obtained
by the enlarged training set. Donmez et al. [3] presented a sampling approach
for ranking tasks, which measures the change as the difference between the
current model and the additional model trained with the selected examples.
Recently, Cai et al. [24] applied this strategy to regression tasks.

There are several other active learning strategies proposed. A comprehensive
active learning survey can be found in [6].

2.2 Active Learning for SVMs

Support vector machines (SVMs), built on solid mathematical and statistical
foundation, play an important role in supervised learning. Many active learning
algorithms, especially margin-based algorithms, have been specifically proposed
for SVMs. We summarize existing margin-based active learning for SVMs as
follows:

1. Simple Margin [18]: The simple margin algorithm is one of the most widely
adopted active learning strategy when employing SVMs as the base learner,
which chooses the examples that are closest to the separating hyperplane.

2. MaxMin Margin [18]: This active learning method aims to select the data
instances that equally split the version space once labeled and added to the
training set.

3. Ratio Margin [18]: This sampling approach is an extension of MaxMin
Margin by taking particular consideration of the shape of version space.

4. Representative Sampling [5]: This sampling algorithm selects the most
representative points within the margin using the clustering techniques.

5. Multi-criteria-based Sampling [14]: This approach simultaneously con-
siders multiple criteria for sampling, and queries the data examples that are
both informative and representative.

6. Diversity-based Sampling [13]: This strategy extends the simple margin
to batch mode active learning by incorporating a diversity measure, which
is calculated by their angles, to enforce the selected points to be diverse.

7. Confidence-based Sampling [10]: This active sampling algorithm can be
regarded as a variant of the simple margin, which measures the uncertainty
value of each sample as its conditional error.

As listed above, a common feature among the margin-based active learning
methods is that they tend to pick the data examples located in the margin. Al-
though existing margin-based active learning strategies are quite straightforward
for SVMs, one limitation is that they lack solid theoretical support. In the next
sections, we propose a new active learning algorithm for SVMs, together with
theoretical justification.
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3 Maximum Model Change for SVMs

In this section, we first provide a brief introduction to SVMs, focusing on the
model fitting with the Stochastic Gradient Descent (SGD) rule. Then, the details
of the proposed active learning algorithm, Maximum Model Change (MMC), for
SVMs are provided. Finally, we analyze the computational complexity of the
proposed algorithm.

3.1 Training SVMs with Stochastic Gradient Descent

For simplicity, we concentrate on the binary classification problem in this paper.
It is straightforward to generalize the proposed method to multi-class problems.
Given a training set L = {xi, yi}ni=1, where xi ∈ R

d is a d-dimensional feature
vector and yi ∈ {1,−1} is a class label, the separation hyperplane of linear SVM
model is represented as:

f(x) = wTx+ b = 0, (1)

where w denotes the weight vector parameterizing the model. For simplicity, we
omit the bias term b throughout this study, which is commonly used in practice.
In fact, it is easy to employ the bias by padding extra dimension of all 1’s.

Building a SVM classifier is to solve the following Quadratic Programming
(QP) problem:

min
w

1

2
||w||2 + C

n∑

i=1

ξi

s.t. yiw
Txi ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., n, (2)

where ξi is a slack variable. The above QP problem can be equivalently rewritten
as an unconstrained problem by re-arranging the constraints and substituting
the parameter C with C = 1

λ as follows:

min
w

λ

2
‖w‖2 +

n∑

i=1

[1− yiw
Txi]+, (3)

where the subscript indicates the positive part. The first term is the regularizer,
and the second term represents the standard Hinge loss. More generally, the soft
margin loss is adopted with a margin parameter γ ≥ 0, which treats the margin
as a variable [19]. Thus, the SVM optimization problem can be reformulated as:

min
w

λ

2
‖w‖2 +

n∑

i=1

[γ − yiw
Txi]+, (4)

where the second term [...]+ is the so-called soft margin loss. When γ = 1, the
second term is the Hinge loss.
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To find w minimizing the objective function, a widely used search approach is
Stochastic Gradient Descent (SGD), which updates the parameter w repeatedly
according to the negative gradient of the objective function with respect to each
training example:

w← w − α
∂Ow(xi)

∂w
, i = 1, 2, ..., n, (5)

whereOw(xi) and α are the objective function and the learning rate, respectively.
With the particular of objective function (4), the update rule can be written as:

w ←
{

(1− αλ)w + αyixi, if yiw
Txi < γ,

(1− αλ)w, otherwise.
(6)

In the literatures, several SGD-based learning algorithms have been well studied
for solving the SVMs optimization problems [15,19]. They share the same update
rule (6) with different scheduling of the learning rate.

3.2 Model Change Computation

Here, we consider the SGD rule in the active learning cases. Suppose a candidate
example x+ is added to the training set with a given class label y+, the objective
function on the expanded training set L+ = L ∪ (x+, y+) then becomes:

min
w

λ

2
‖w‖2 +

n∑

i=1

[γ − yiw
Txi]+ + [γ − y+wTx+]+︸ ︷︷ ︸

:=�w(x+)

. (7)

As a result, the parameter w is changed due to the inclusion of the new example
(x+, y+). We estimate the effect of adding the new point on the training loss to
approximate the change, and hence the model change can be approximated with
the gradient of the loss function at the example (x+, y+):

Cw(x+) = �w ≈ α
∂�w(x

+)

∂w
. (8)

The derivative of the loss at the candidate point (x+, y+) is calculated as:

∂�w(x
+)

∂w
=

{
−y+x+, if y+wTx+ < γ,

0, otherwise.
(9)

Clearly, the model updates its weight based on solely those examples that satisfy
the inequality y+wTx+ < γ, which is straightforward for SVMs.

The goal of MMC is to query the example that maximally changes the current
model. According to (8) and (9), only the set Ψ = {x : y+wTx+ < γ} ⊆ U has
the ability to change the model, and hence only this set needs to be considered
in active learning. The sampling criteria can be expressed as:

x∗
MMC = arg max

x+∈Ψ
||Cw(x+)||. (10)
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Algorithm 1. MMC active learning for SVMs

Input: The labeled data set L={(xi, yi)}ni=1, the unlabeled pool set U , the parameter
γ, the SVM classifier f(x) trained with L.
1: for each x+ in U do
2: if |wTx+| < γ then
3: Ey+{||Cw(x+)||} ← ||x+||.
4: end if
5: end for

Output: x∗ ← argmaxx+ Ey+{||Cw(x+)||}

In practice, the true label y+ of the example x+ is unknown in advance. With
y ∈ {1,−1}, we have

Ω = {x : |wTx+| < γ} ⊆ {x : y+wTx+ < γ, y ∈ {1,−1}}.

We hence rewrite the inequality constraint y+wTx+ < γ as |wTx+| < γ. Mean-
while, we take the expected model change over each possible class labels y+ ∈
Y = {1,−1} to approximate the true change. Suppose that the learning rate α
for each candidate point is identical, the final sampling criteria can be reformu-
lated as:

x∗
MMC =arg max

x+∈Ω
Ey+{||Cw(x+)||}

=arg max
x+∈Ω

∑

y+∈Y

P̂ (y+|x+)|| − y+x+||

=arg max
x+∈Ω

∑

y+∈Y

P̂ (y+|x+)||x+||

=arg max
x+∈Ω

||x+||, (11)

where P̂ (y+|x+) represents the conditional probability of label y+ given example
x+ estimated by the current classifier. The last step above follows from the fact
that P̂ (y+ = +1|x+) + P̂ (y+ = −1|x+) = 1. An intuitive explanation for MMC
is that the data examples maximally changing the current classifier are expected
to result in faster convergence to the optimal model. The corresponding pseudo-
code is given in Algorithm 1.. Based on the above derivation, MMC can be
deemed as a margin-based active learning strategy as well because it shares the
common feature of preferring examples within the margin, i.e. {x : |wTx+| < γ}.

3.3 Computational Complexity

Assume that there are n labeled examples in the training set, and m unlabeled
instances in the pool set. There are three main operations in the MMC method:
SVM training, sample filtering, and sample selection.

SVM training typically needs O(n2) calculation. For the sample filtering, the
main operation is to calculate the inner product, which has a time complexity of
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O(d). Therefore, the total time complexity is O(md) at this step. For the sample
selection, most time is spent on computing the norm with a complexity of O(d),
and hence the total time complexity is O(kd)) if there are k eligible examples.
Summing up, the total time complexity for MMC is O(n2 + (m+ k)d), which is
promising for real-world tasks.

4 Theoretical Analysis

The goal of a learning model is to minimize the generalization error on future
data. Clearly, the generalization error is changed if and only if the model is
changed. Thus, active learning only needs to select the samples that change the
current model, which is support vectors for SVMs. A nice feature of SVMs is
that support vectors usually represent a tiny portion of the training data.

We have shown that points within the margin are the ones having the ability
to change the current model. In this section, we attempt to provide a theoretical
backup behind our strategy by analyzing the convergence property. Assume that
{∃ε, x : y+wTx+ ≤ γ − ε} = {x : y+wTx+ < γ}. Since the scaling factors is
to scale the derived bound by some fixed constant, which does not affect the
convergence property, for clarity, we drop the scaling factors in the update rule:

w←
{

w + yixi, if yiw
Txi < γ,

w, otherwise.
(12)

Theorem. (Convergence property) Suppose that ||xj || ≤ R for all xj ∈ L ∪ U .
Let the current solution be wc, and further suppose that there exists an optimal
solution w∗ such that yj(w

∗)Txj ≥ γ for all examples xj. Let ||wc|| = M and
||w∗|| = N . Then, the total number of label requests A made by MMC is at most

O

(
N

γ

(
M +N +

N(R2 − ε)

γ

))
.

Proof. The proposed MMC algorithm chooses the data points only that change
the current model, which implies that

y+wTx+ < γ ⇔ y+wTx+ ≤ γ − ε. (13)

According to the SGD update rule in Eq. (12), we have

w(t+1) ← w(t) + y+x+, t = 1, 2, ...,A. (14)

where w(t=1) stands for the current solution, i.e. w(t=1) = wc. According to the
above update rule in Eq. (14), we get:

||w(t+1)||2 =||w(t) + y+x+||2

=||w(t)||2 + ||x+||2 + 2y+(w(t))Tx+

≤||w(t)||2 + ||x+||2 + 2(γ − ε)

≤||w(t)||2 +R2 + 2(γ − ε). (15)
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and

(w(t+1))Tw∗ =(wt)Tw∗ + y+(x+)Tw∗

≥(wt)Tw∗ + γ. (16)

Through iterative deduction of the above two equations, we have

||w(A+1)||2 ≤||wc||2 +AR2 + 2A(γ − ε)

=M2 +AR2 + 2A(γ − ε). (17)

and
(w(A+1))Tw∗ ≥ (wc)Tw∗ +Aγ. (18)

Because (wc)Tw∗ = ||wc|| · ||w∗|| cosφ, where φ is the angle between wc and w∗,
we have:

(w(A+1))Tw∗ ≥Aγ − ||wc|| · ||w∗||
=Aγ −MN. (19)

According to the Cauchy-Schwartz inequality, we see that

(w(A+1))Tw∗ ≤ ||(w(A+1))|| · ||w∗||. (20)

Putting together Eq. (17) and Eq. (19) we get

Aγ −MN ≤
√
M2 +AR2 + 2A(γ − ε)N. (21)

Hence, we get

A ≤N

γ

(
2(M +N) +

N(R2 − 2ε)

γ

)

= O

(
N

γ

(
M +N +

N(R2 − ε)

γ

))
. (22)

�

Corollary. Suppose that ||xj || ≤ R for all xj ∈ L ∪ U . Let the current solu-
tion be wc, and further suppose that there exists an optimal solution w∗ such
that yj(w

∗)Txj ≥ γ for all examples xj . Let ||wc|| = M and ||w∗|| = N . Suppose
the probability of selecting the points satisfying the inequality y+wTx+ < γ is
Pa. Then the total number of label requests made by passive learning is at most

O

(
N

γPa

(
M +N +

N(R2 − ε)

γ

))
.

Proof. This corollary can be directly derived from the above theorem, and hence
we skip the proof and only present the result. �
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According to the theoretical justifications provided by the above convergence
theorem and corollary, we get the following conclusions: (1) because 0 < Pa < 1,
the upper bound of label requests made by MMC is proven to be smaller than
random selection, demonstrating that the margin-based strategy is expected to
outperform passive learning, and (2) the convergence property guarantees that
MMC converges with the maximal label requests derived above.

5 Linkage between MMC and Simple Margin

As discussed before, one of the most widely used SVM active learning solution is
simple margin, which chooses the points that are closet to the decision boundary.
The distance between a point x and the boundary wTx = 0 is computed as:

Dist(w, x) =
|wTx|
||w|| , (23)

and the sampling function can be written as:

x∗
SM = arg min

x+∈U
Dist(w, x+) = arg min

x+∈U
|wTx+|. (24)

Although it achieves good practical performance, it still lacks of reasonable the-
oretical justifications.

Here, we attempt to explore the connection between MMC and simple margin
to provide a potentially theoretical justification. Let x+

(j) be the j-th close-to-

boundary example in the pool, e.g. x+
(1) = x∗

SM. Assume there are m unlabeled

examples in the pool. According to Eq. (24), we have

|wTx∗
SM| = |wTx+

(1)| < |w
Tx+

(2)| < · · · < |w
Tx+

(m)|. (25)

Now, let us consider the inequality |wTx+| < γ used for sample filtering. If we
restrict the margin parameter γ as:

|wTx∗
SM| < γ ≤ |wTx+

(2)|, (26)

it is clear to see that there will be only one point, i.e. the one most close to
boundary, satisfying this inequality. Hence we have

x∗
SM = Ω = {x : |wTx+| < γ} ⇒ x∗

SM = x∗
MMC. (27)

Thus, simple margin can be viewed as a special case of MMC, and the theoretical
results derived above is applicable to this popular method as well.

6 Experiments

6.1 Data Sets and Experimental Settings

To validate the performance of the proposed algorithm, we use eight benchmark
data sets of various sizes from the UCI machine learning repository1: Biodeg,

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Table 1. The information of the eight binary-class data sets from UCI repository

Data set # Examples # Features Class distribution

Biodeg 1055 41 356/699

Ionosphere 351 34 225/126

Parkinsons 195 22 147/48

WDBC 569 30 357/212

Letter

D-vs-P 1608 16 805/803
E-vs-F 1543 16 768/775
M-vs-N 1575 16 792/783
U-vs-V 1577 16 813/764

Ionosphere, Parkinsons, WDBC, Letter. For Letter, a multi-class data set,
we select four pairs of letters (i.e. D-vs-P, E-vs-F, M-vs-N, U-vs-V) that are
relatively difficult to distinguish, and construct a binary-class data set for each
pair. Table 1 shows the information of the eight binary-class data sets.

Each data set is randomly divided into three disjoint subsets: the base labeled
training set (denoted as L), the unlabeled pool set (denoted as U), and the test
set (denoted as T ). We use the base labeled set L as the small labeled data set
to train the initial SVM models. The pool set U is used as a large size unlabeled
data set to select the most informative examples, and the separate test set T is
used to evaluate different active learning algorithms. More specifically, the active
learning scenario for each data set is constructed as: L(5%)+U(75%)+T (20%).
We normalize the features with the function below:

fN
(i,j) =

f(i,j) −mini∈n{f(i,j)}
maxi∈n{f(i,j)} −mini∈n{f(i,j)}

, (28)

where n denotes the number of examples in each of data set, and f(i,j) represents
the j-th feature from the i-th example.

The optimal margin parameter γ is determined by the standard 5-fold cross
validation. In this study, the active learning process iterates 10 rounds. In each
round of data selection, 3% of the whole examples are selected from U . These
examples are then added to the training set, and SVM classifiers are re-trained
and tested on the separate test set T .

6.2 Comparison Methods and Evaluation Metric

To test the effectiveness of the proposed active learning algorithm, we compare it
against the following four competitors including three state-of-art active learning
for SVMs methods, and one baseline random selection: (1) S-MARGIN [18]: the
simple margin algorithm, (2) CLUSTER [5]: the clustering-based representative
sampling approach, (3) QUIRE [14]: the multi-criteria-based sampling, and (4)
RAND: the random sampling. A detailed description of each of these algorithms
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(c) Parkinsons
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(d) WDBC

Fig. 1. Comparison results of different active learning algorithms on theBiodeg, Iono-
sphere, Parkinsons, and WDBC data sets

is provided in Section 2. For evaluation, the classification accuracy is adopted to
measure the performance on the test set:

Accuracy =
1

|T|

|T|∑

i=1

1{f(xi) = yi}, (29)

where |T| stands for the size of the test set, and yi and f(xi) are the ground truth
and prediction of xi, respectively. 1{.} is the indicator function. To avoid random
fluctuation, each experiment is repeated 10 times by varying the base-pool-test
sets, and the averaged classification accuracy is reported.

6.3 Comparison Results and Discussions

The comparison results of the five data selection algorithms on these eight UCI
benchmark data sets are presented in Figure 1 and Figure 2. The X-axis denotes
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Fig. 2. Comparison results of different active learning algorithms on the D-vs-P, E-
vs-F, M-vs-N, and U-vs-V data sets

the number of iterations for the active learning process, and the Y-axis represents
the classification accuracy. Several general observations as shown in these figures
are explained as follows.

(1) For all five algorithms, the classification accuracy generally increases with
the iterations of active learning, which matches the intuition that model’s per-
formance is positively correlated with the amount of training set available.

(2) The proposed MMC algorithm is observed to perform the best among the
five approaches in most cases during the entire data selection process, demon-
strating that the proposed active learning method is more effective in choosing
the most informative examples to improve the model quality. This is likely due
to the reason that MMC quantifies the model change as the gradient of the loss,
which is highly correlated with the objective function used to evaluate the SVM
models. Therefore, the examples selected by MMC are more likely to contribute
positively to improve the model. In addition, we observe that MMC converges
much faster than the competitors on several data sets (e.g. D-vs-P, E-vs-F, M-
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Table 2. The p-value of Wilcoxon signed rank test of MMC versus S-MARGIN,
QUIRE, CLUSTER and RAND on the UCI data sets

Data sets vs. S-MARGIN vs. QUIRE vs. CLUSTER vs. RAND

Biodeg p<0.1 p<0.1 p<0.05 p<0.05

Ionosphere p<0.05 p<0.05 p<0.05 p<0.05
Parkinsons p<0.05 p<0.05 p<0.05 p<0.05
WDBC p<0.05 p<0.05 p<0.05 p<0.05
D-vs-P p<0.05 p<0.05 p<0.05 p<0.05
E-vs-F p<0.1 p<0.05 p<0.05 p<0.05

M-vs-N p<0.05 p<0.05 p<0.05 p<0.05
U-vs-V p<0.05 p<0.05 p<0.05 p<0.05

vs-N, U-vs-V), i.e. the highest classification accuracy is achieved with much
less examples added to the training set. This agrees with the intuitive explana-
tion that the data examples greatly changing the current classifier are expected
to produce faster convergence to the optimal model.

(3) We see that the performance of CLUSTER is inconsistent. It works well
on some data sets, but performs poorly on the others. This phenomena may be
explained as follows. The CLUSTER method utilizes a clustering technique to
choose the representative data points, which may fail if there is no clear cluster
structure in the data. On the contrary, QUIRE is observed to yield relatively
good performance on most data sets. The success of QUIRE may be attributed to
the principle of choosing examples that are both informative and representative.

(4) To better validate the effectiveness of the proposed approach, we conduct
the significance test on the comparisons. Table 2 presents the results of Wilcoxon
signed rank test of MMC versus S-MARGIN, QUIRE, CLUSTER and RAND
strategies on the benchmark UCI data sets. The comparison results with p>0.05
are underlined. It shows that the proposed method performs statistically better
(p<0.05) than S-MARGIN, QUIRE, CLUSTER and RAND on most data sets.
We also perform the 2-tailed paired T-test to further examine the effectiveness of
MMC. Due to the space limitation, the p-values according to the 2-tailed T-test
are not reported here, and the results show that MMC significantly outperforms
(p<0.05) the competitors in most cases during the sample selection process.

6.4 Efficiency Comparison

In this subsection, we compare the CPU running time taken by MMC versus the
competitors. All algorithms were implemented using MATLAB on a standard
desktop computer with 2.53 GHz CPU and 8 GB of memory.

Table 3 shows the comparison results, together with the information of the
pool set. As shown in the table, the time complexity of MMC is slightly higher
than that of S-MARGIN, but much more efficient than the other two strate-
gies, i.e. QUIRE and CLUSTER. This is due to the reason that QUIRE involves
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Table 3. The CPU running time (seconds), together with the information of pool set

Data sets # Ex. × Features (U) MMC S-MARGIN QUIRE CLUSTER

Biodeg 791 × 41 0.04 0.01 100.85 1.12
Ionosphere 263 × 34 0.02 0.01 3.79 0.21
Parkinsons 146 × 22 0.00 0.00 0.84 0.15
WDBC 427 × 30 0.01 0.00 16.38 0.44
D-vs-P 1206 × 16 0.07 0.02 341.94 1.03
E-vs-F 1157 × 16 0.02 0.01 301.87 0.78
M-vs-N 1181 × 16 0.02 0.02 324.70 1.02
U-vs-V 1183 × 16 0.05 0.01 219.10 1.00

calculating the inverse of a large scale matrix, and CLUSTER requires consid-
erable efforts on clustering. In summary, the proposed MMC method is quite
efficient in computational complexity, and is promising for real-world applica-
tions.

7 Conclusions

In this paper, focusing on SVMs, we introduce a new interpretation for margin-
based active learning with the idea of expected model change, and accordingly
propose a novel margin-based active learning algorithm named Maximum Model
Change (MMC), which is to choose the examples leading to the maximal change
in the current classifier. The change is measured as the difference between the cur-
rent model parameters and the updated parameters trained with the accumulated
training set. Inspired by the SGD rule for solving the SVMs optimization prob-
lems, the change is approximated as the gradient of the loss at a candidate point. In
addition, we provide a theoretical analysis of the convergence property for the pro-
posed algorithm, and compare the derived sampling bound against passive learn-
ing.The comparison shows that the upper boundof sample requestsmadebyMMC
is smaller than passive learning. We further connect the proposed approach with
the widely adopted simple margin approach to provide a theoretical justification
for this popular algorithm. Substantial experimental results on various benchmark
UCI data sets have demonstrated that the proposed strategy is highly effective in
selecting informative examples, and efficient in computation time.
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